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Abstract

The principle of symmetric criticality allows one to reduce the search of symmetric critical points
for the conformal total tension functional in a Kaluza–Klein conformal universe, to the search of
closed curves in its gravitatory component which are critical points for certainr-elastic energy
functionals. The constancy of the mean curvature is preserved in this reduction of symmetry. In
this framework we study ther-elasticity of fibres in a semi-Riemannian warped tube. We obtain a
wide class of tubes which are foliated byr-elastic circles and give some applications including a
characterization of the photon sphere in a Schwarzschild spacetime from the point of view of the
r-elasticity. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let (P, ḡ) be a semi-Riemannian manifold and denote byI (S, P ) the smooth manifold
of immersions of ann-dimensional compact smooth manifoldS in P . The Willmore–Chen
functionalT : I (S, P ) → R is given by (see [9])

T (ϕ) =
∫
S

(〈H,H 〉 − τ)n/2dv,

whereH is the mean curvature vector field ofϕ (i.e. the tension field ofϕ), dv denotes
the volume element of the induced metricϕ∗(ḡ) andτ stands for the extrinsic scalar cur-
vature ofϕ. This functional is invariant under conformal transformations of the ambient
space and is also known as theconformal total tension functional. The associated vari-
ational problem is actually stated in(P, [ḡ]), where [̄g] denotes the conformal structure
defined byḡ. The nicest immersions ofS in (P, [ḡ]) are those which support the least
possible conformal total tension from the surrounding conformal structure and therefore
they provide Willmore–Chen submanifolds, i.e. critical points ofT . In particular [5], ifG
is anr-dimensional compact group of isometries in(P, ḡ), then this variational problem
for n = r + 1 can be reduced to one associated with a certainr-elastic energy functional
acting on closed curves in the orbit space (in the next section we define thisr-elastic en-
ergy functional whose critical points are calledr-elasticae, in particular, whenr=1 this
notion coincides with the classical one of elastic curve). This reduction of variables works
fine whenP is a principal fibreG-bundle with a principal flat connection over a certain
semi-Riemannian manifold(N, g) andḡ is obtained by the so called Kaluza–Klein inverse
mechanism. In addition, we are interested in thoseG-invariant Willmore–Chen submani-
folds which have constant mean curvature in(P, ḡ) because they are solutions to the isoperi-
metric problem area–volume, which is what we call theseG-submanifolds. Consequently, to
obtainG-submanifolds in a Kaluza–Klein conformal universe,(P, [ḡ]), we only need to get
r-elastic circles in its gravitatory component. Here circle means a closed curve with constant
curvature.

In this paper, we consider spaces as(N, g
f
ε ) = M ×f εS

1, for a given semi-Riemannian
manifold (M, g) and a smooth positive warping functionf on M. For anyp ∈ M,
the fibreγp = {p} × S1 provides a circle and then we characterize those fibres which
are r-elastica. In particular, we classify those(M, g, f ) which provide a foliation by
r-elastic circles in(N, gfε ). We give some examples of solutions to illustrate this and
use it to obtain examples of Kaluza–Klein conformal universes which are foliated with
leaves beingG-submanifolds. We also give some general applications to the existence of
G-submanifolds. Finally, we obtain other convenient applications including the following
one:

In the Schwarzschild spacetime, every great circle of the sphere whose distance to the
center of the star is(3+(1/r))m (m being the mass of the star), is an r-elastica in this space-
time. Consequently, we can talk about a sequence of r-elastic spheres in the Schwarzschild
spacetime which converges towards the photon sphere.
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2. Circle warped product

Let (M, g) be a semi-Riemannian manifold andf a smooth positive function onM.
We denote by∇ the Levi-Civita connection of(M, g). OnN = M × S1, we consider the
semi-Riemannian metricgεf = g + εf 2dt2, with obvious meaning andε = ±1. Then,

(N, g
f
ε ) is called thewarped productwith warping functionf , base(M, g) and fibre

(S1,dt2). Notice that the index ofgεf coincides with the index ofg if ε = +1, while
it increases the index ofg if ε = −1, by one. Wheng is understood then, we still use
M ×f εS

1 to denote(N, gfε ) (see [7,14] for details about this subject). For anyp ∈ M,
let γp = {p} ×f εS

1 be the fibre throughp. We assume it is arclength parametrized, so
ε is the causal character of its unit speed vector fieldT = γ ′

p. Let ∇f be the Levi-Civita

connection of(N, gfε ). Then

∇f
T T = − ε

f
grad(f ), (2.1)

where grad(f ) stands for the gradient off in (M, g). This equation shows thatγp has

constant curvature, sayκ ≥ 0, in (N, gfε ) for anyp ∈ M. In particular,γp is a geodesic

of (N, gfε ) if and only if p is a critical point off . Let6 be the set of critical points off .
Then the principal normal vector field to the fibres,U , defines a unit speed flow on the open
setM − 6 in the direction of grad(f ), namely grad(f ) = −εδκfU, whereδ denotes the
causal character ofU . Moreover, from∇f

T U = (U(f )/f )T , one sees that the torsion of

each fibre in(N, gfε ) vanishes identically.
Let� be the manifold of regular closed curves in(N, gfε ). For any natural numberr, we

define anr-elastic energy functionalF r : � → R by

F r (γ ) =
∫
γ

(
κ2

)(r+1)/2
ds,

whereκ denotes the curvature function ofγ and we write the integrand in that form to
point out that it is an even function of the curvature. The variational problems associ-
ated with those functionals have been considered in [4]. Critical points ofF r are called
r-elasticaeand the Euler–Lagrange equations characterizing these curves were computed
there.

Remark 1. Recall that one of the oldest topics in the calculus of variations is the study of
the elastic rod, which according to Daniel Bernouilli’s idealization, minimizes total squared
curvature among curves of the same length and first order boundary data. Therefore, the
classical term elastica refers to a curve in the Euclidean planeE2 or Euclidean spaceE3

which represents such a rod in equilibrium. While the elastica and its generalizations have
long been (and continue to be) of interest in the context of elasticity theory, the elastica
as a purely geometrical entity seems to have been largely ignored. In [8] was found that
the natural generalization of elastica to space forms (where arclength is not constrained)
constitutes an interesting example in the setting of the general theory of exterior differential
systems. The term of free elastica is used in [11] to name these curves. In [12], the elastic
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curves inE2 are used to obtain cylindrical configurations of Nambu-Goto-Polyakov string
theory inE3. This result was drastically extended and simplified by the first author in [2]. In
this paper, we use the term r-elastica to name the critical points of the functionalF r . Results
of Section 4 connecting this topic with the Willmore–Chen variational problem could be
regarded as an intent to relate the r-elasticity actions with brane actions, in order to obtain
symmetric shapes of p-branes coming from r-elasticae.

Now, we deal with the following:

Problem. What about ther-elasticity of fibres in(N, gfε )?
This problem has been studied in [5,6] when(N, gfε ) is a surface of revolution in either

the Lorentzian 3-spaceL3 or the Euclidean 3-spaceE3, i.e.M is a plane curve andf denotes
the distance to the axis of revolution on the profile curve. In particular, the so-calledtrumpet
surfacesare characterized there as the only surfaces of revolution, besides right cylinders,
whose parallels are allr-elastica.

Now, we use the Euler–Lagrange equations associated withF r [4], to deduce that a fibre
γp is anr-elastica if and only if

κr
(
(r + 1)Rf (U, T )T + εδrκ2U

)
= 0, (2.2)

alongγp, whereRf stands for the curvature operator of(N, gfε ). Notice that Eq. (2.2)

implies that the sectional curvature of(N, gfε ) along the osculating plane of anr-elastic
fibre is either nonpositive (ifε = +1) or nonnegative (ifε = −1). It should also be
observed that every geodesic fibre is automatically anr-elastica for anyr. The following
result provides a characterization of circle warped products(N, g

f
ε ) whose fibres are all

r-elastica.

Proposition 1. All the fibres of(N, gfε ) = M ×f εS
1 are r-elastica if and only if either

1. f = a is a constant,M−6 = ∅ and(N, gfε ) is the semi-Riemannian product of(M, g)
and a circle of radius a (in this case all the fibres are geodesic), or

2. The unitary fieldU = grad(f )/‖grad(f )‖ defines a unit speed geodesic flow onM−6.
Furthermore, the evolution of f along the U-flow is given by

(r + 1)f U(U(f )) = rU(f )2. (2.3)

Proof. The curvature term appearing in Eq. (2.2) is computed to be

Rf (U, T )T = − ε

f
∇f
U (grad(f )).

We put grad(f ) = δU(f )U in the above formula and use the fact that the base(M, g)

defines a foliation on(N, gfε ) with totally geodesic leaves isometric with(M, g) to obtain

Rf (U, T )T = −εδ
f
(U(U(f ))U + U(f )∇UU) .

Now, we combine this equation with (2.2) and useκ2 = U(f )2/f 2 to obtain∇UU = 0
and along this unit speed geodesic flow, the functionf evolves according to (2.3). �
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Remark 2. If (M, g) is Riemannian andε = −1, then(N, gfε ) is a standard static space-
time. Also, if(M, g) is a Lorentzian solution given in the above proposition andε = +1,
then it admits a geodesic and irrotational unit vector fieldU . In particular, if this is timelike,
then it is (at least locally) a proper time synchronizable observer field.

3. Some examples

In this section, we describe a list of examples which provide solutions to the problem
of having all fibres beingr-elastica. The simplest case is that whereM is one-dimensional
and it includes the surfaces of revolution inE3 andL3. Therefore, our preliminary example
was given in [6] (see there for some pictures).

Preliminary example (The trumpet surfaces). LetR3 endowed with the metricgµ =
dx2 +dy2 +µdz2, µ = ±1. Then(R3, gµ) is either the Euclidean 3-space,E3, if µ = 1 or
the Lorentzian 3-spaceL3 if µ = −1. For a certain constantc, we define in the{x, z}-plane
an arclength parametrized curveβ(s) = (x(s), z(s)) and

x(s) = csr+1, z(s) =
∫ s

0

√
1 − µ(r + 1)2c2t2rdt.

Then, we rotateβ around thez-axis to obtain a surface of revolutionSβ = I ×x(s)

S1, I being the domain ofβ, in (R3, gµ) whose parallels are all spacelike,r-elastica in
Sβ .

Example 1 (A constant scalar curvature metric which is r-elastica foliated). Let(M, g)

be the Poincaré half-plane identified with the regionv > 0 in R2 and the metricg =
(1/v2)(du2 + dv2) with constant Gaussian curvature –1. This metric is a warped product
one. In fact, we putt = ln v and then,g = (1/exp 2t)du2 + dt2. We consider the smooth
functionf : M → R given byf (u, t) = t r+1. The curvesu = constant define a geodesic
flow in the direction of grad(f ) in (M, g). In other words,U = ∂t generates a unit speed
geodesic flow in(M, g). Now, the functionf is positive in the open setV = {(u, v)| v > 1}
and its evolution throughout theU -flow is described by (2.3). Consequently,V ×f εS

1 has
all the fibres beingr-elastica.

Metrics with constant scalar curvature in dimension 3 are the next in interest after those
with constant curvature. The scalar curvature function ofV ×f εS

1 is, up to a positive
constant,−1+ ((r+1)/exp 2t)(1− r). In particular, it is constant whenr = 1. In this case,
we obtain a metric with negative constant scalar curvature on the tubeV ×f εS

1 which is
foliated by freer-elastic circles.

Example 2 (Tubes around a Robertson–Walker spacetime). Let(M, g) be a Robertson–
Walker spacetime, i.e.M = (0, a) ×h S, wherea is some positive real number,h :
(0, a) → R is a positive smooth function,(S, g0) is a three-dimensional Riemannian
manifold with constant curvature and theng = −dt2 + h2g0, with obvious meaning. The
Robertson–Walker flow which is generated byU = ∂t is a geodesic one and it provides a



116 M. Barros et al. / Journal of Geometry and Physics 34 (2000) 111–120

relativistic model of the flow of a perfect fluid. We definef : M → R by f (t, p) = t r+1

and use Proposition 1 to conclude that the tubeM×f εS
1 has all the fibres beingr-elastica.

Example 3 (Tubes around a Schwarzschild universe). The Schwarzschild solution of the
empty space Einstein equation models the gravitational field outside an isolated, static,
symmetric star. Staticity and spherical symmetry conditions are both satisfied on the product
manifoldM = R × (0, a) × S2, for a > 0 endowed with a warped product metric as
follows:

g = −F 2(s)dt2 + ds2 +G2(s)dσ 2,

where(S2,dσ 2) is the unit round sphere. Now,(M, g) is a solution of the empty space
Einstein equation provided

F = G′ =
√

1 − 2m

G
,

for some constantm. The functionG, defined on(2m,+∞) is usually interpreted as the
distance from the center of the star. We definef : M → R by f (t, s, p) = sr+1. The
spacelike vector fieldU = ∂s generates a unit speed geodesic flow in the direction of
grad(f ) onM andf is described by Eq. (2.3) when it evolves along this flow. Therefore,
all the fibres of the tubeM ×f εS

1 arer-elastica.

Example 4 (A wide framework of solutions). Let(M, g) be a Riemannian manifold en-
dowed with a non-trivial closed conformal fieldX, i.e. there exists a smooth function
ψ onM with ∇zX = ψ.z, for every vectorz tangent toM. This kind of structure has
been widely studied in the literature not only for itself but also related to other sub-
jects (see [13] and references therein). For example it is known that the set0 of points
whereX vanishes has at most two points and outside of0, (M, g) is locally a warped
product with a one-dimensional base. The unitary vector fieldU = X/‖X‖, defined in
M −0, generates a unit speed geodesic flow. Therefore, we can consider a positive smooth
function with gradient in theU -direction and evolving, at least locally, according to Eq.
(2.3) along theU -flow to obtain an ample family of tubes which are foliated byr-elastic
circles.

Example 5(An example which is not a warped product). All the above exhibited solutions
are, at least locally, warped product semi-Riemannian metrics with a one-dimensional base,
the base generating a geodesic flow. However, we can get other solutions. To make clear this
claim, we take an arclength parametrized curve,γ (s) inE3 with positive torsion everywhere.
Then, we consider the ruled surface generated onγ (s) by the binormal lines,M = {γ (s)+
vB(s)| s ∈ I andv > 0}. Let g be the metric onM induced by the Euclidean one onE3.
Then(M, g) is not a local warped product,g = (

1 + v2τ2(s)
)

ds2 + dv2, whereτ denotes
the torsion function ofγ . However, it still admits a geodesic flow,U = ∂v. Therefore, if we
choosef : M → R defined byf (s, v) = vr+1, then all the fibres of the tubeM ×f S

1 are
r-elastica.



M. Barros et al. / Journal of Geometry and Physics 34 (2000) 111–120 117

4. Some applications in conformal Kaluza–Klein supergravity

Let (P, [ḡ]) be a conformal universe, i.e. [ḡ] is the conformal structure associated with
a semi-Riemannian metric̄g onP . Assume thatG is ar-dimensional, compact Lie group
which acts onP through isometries of(P, ḡ). The best worlds to live in this universe are
those compact submanifolds which satisfy the following three properties:
1. The submanifolds areG-invariants. This means they have a natural degree of established
G-symmetry.

2. The submanifolds support the least global tension possible from the surrounding confor-
mal structure [̄g]. In particular, they must be critical points of the total tension functional,
i.e. Willmore–Chen submanifolds in(P, [ḡ]).

3. The submanifolds are solutions to the isoperimetric problem area–volume (minimum
area for a fixed volume or maximum volume for a fixed area). In particular, they must
have constant mean curvature in(P, ḡ).
From now on, we will use the term ofG-submanifoldto name those submanifolds in

a conformal universe(P, [ḡ]), which areG-invariant, Willmore–Chen and they have a
constant mean curvature in(P, ḡ).

Next, we describe a class of conformal universes which have great interest in super-
gravity. We start from a semi-Riemannian manifold(N, g), the gravitatory space. LetH
be a closed normal subgroup of the fundamental groupπ1(N) andφ : π1(N)/H →
G a monomorphism, whereG is a r-dimensional, compact Lie group. Then, we can
define a principal fibreG-bundleπ : P → N which admits a principal flat connec-
tion, ω, whose holonomy sub-bundle is the regular covering ofN associated withH .
The way to construct this couple(P, ω) is well-known (see [10] for example). If dσ 2

is a bi-invariant metric onG, we can define the following semi-Riemannian metricḡ
onP :

ḡ = π∗(g)+ ω∗(dσ 2),

and this is called aKaluza–Kleinmetric (also known as abundle-likemetric). It should
be noticed that̄g is the only semi-Riemannian metric onP with the following property:
π : (P, ḡ) → (N, g) is a semi-Riemannian submersion with totally geodesic fibres iso-
metric with (G,dσ 2) and horizontal distribution defined byω. Furthermore, the natural
action ofG on P is carried out by isometries of(P, ḡ). Then, we get a class of confor-
mal universes in which a unified Kaluza–Klein theory can be constructed. This unifies
the gravityg with the gauge potentialω. Now the problem is to studyG-submanifolds
in this kind of conformal universes. The surprising fact is that this problem for(r +
1)-dimensionalG-submanifolds is equivalent to that ofr-elasticae with constant curva-
ture in the gravitatory component(N, g). This equivalence was shown in [4,5] (see also
[1,3] for other conformal universes). However, we wish to make some comments about
this symmetry reduction method because it uses the principle of symmetric criticality
(in a formulation due to Palais [15]) which has been used in many applications of the
Calculus of Variations, in particular in Physics, without being particularly
noticed.
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Proposition 2(Barros et al. [4,5]).Let S be an(r+1)−dimensional, compact submanifold
in P. Then, S is a G-submanifold in a Kaluza–Klein conformal universe(P, [ḡ]) if and only
if S = π−1(γ ) andγ is an r-elastica with constant curvature in its gravitatory component,
(N, g).

Proof. LetS be a compact,(r+1)-dimensional smooth manifold and putI (S, P ) to denote
the space of immersions ofS in P . The subspace ofG-invariant immersions is denoted by
IG(S, P ). Notice that it is a smooth submanifold ofI (S, P ) which is guaranteed by the
compacity ofG. This submanifold can be identified with the space of complete lifts of
closed curves in(N, g). Namely,IG(S, P ) = π−1(γ )/γ is a closed curve inN . A direct
computation shows that the mean curvature function ofπ−1(γ ) in (P, ḡ) is obtained by
lifting the curvature function ofγ in (N, g) and the extrinsic scalar curvature ofπ−1(γ ) in
(P, ḡ) vanishes identically. Since the conformal total tension functionalT : (S, P ) → R is
invariant under conformal changes in the ambient metricḡ, it is obviouslyG-invariant. In
this framework, we can use the principle of symmetric criticality:theG -invariant critical
points of the conformal total tension functional onI (S, P ) are the critical points of this
functional but restricted to the submanifoldIG(S, P ). Finally, we compute this restriction
to obtain a constant multiple of ther-elastic energy functionalF r acting on the space of
closed curves in(N, g). �

Propositions 1 and 2 can be combined to obtain examples of Kaluza–Klein conformal
universes which are foliated with leaves beingG-submanifolds. To illustrate this method,
we give a couple of examples.

Example 6. Let V be the open region of the Poincaré half-plane which was defined in
Example 1. We choose any compact Lie groupG with dimensionr and define the function
f onV , like in that example, to obtain(N, gfε ) = V ×f εS

1. LetÑ be the universal covering
ofN which can be regarded as a principal fibreZ-bundle onN . For any real numberλ with
(λ/π) /∈ Q (the set of rational numbers), we defineφλ : Z→ S1 byφλ(a) = exp iaλwhich
is a monomorphism between(Z,+) andS1 ⊂ C viewed as a multiplicative group. Since
G admits closed geodesics, we can extendφλ to a monomorphism, also calledφλ, from
Z to G. This is used to define, via the extending transition functions method, a principal
fibreG-bundleπ : Pλ → N which admits a principal flat connection,ω, with holonomy
sub-bundleÑ(N,Z). Now, we definēg = π∗(gεf )+ω∗(dσ 2) and apply Propositions 1 and
2 to conclude that(Pλ, [ḡ]) is foliated by(r + 1)-dimensionalG-submanifolds.

In particular, if we chooseG = S1, we get(Pλ, [ḡ]) doubly foliated by Willmore tori
with leaves cutting along a closed geodesic of(Pλ, ḡ). In fact, letp ∈ Pλ be a point
with x = (x1, x2) = π(p) ∈ V × S1. Let γ1 be any closed free elastica in(V , g) [11].
Then,β1 = (γ1, x2) is still a closed free elastica inV ×f εS

1 because the base defines a
totally geodesic foliation inV ×f εS

1. Also γ2 = {x1} × S1 is a closed free elastica in
V ×f εS

1. Then,π−1(γ1) andπ−1(γ2) are Willmore tori in(Pλ, [ḡ]) throughp. Moreover,
π−1(γ1) ∩ π−1(γ2) = π−1(x) is a geodesic of(Pλ, ḡ).

Example 7. The above construction can be transferred to the tube around the Schwarzschild
metric already considered in Example 3. Therefore, if(M, g) is the Schwarzschild metric
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andf is chosen as in that example, thenM×f εS
1 is foliated byr-elasticae. Now, given any

r-dimensional, compact Lie group,G, we define a monomorphismφλ : Z→ G and use it
to construct a principal fibreG-bundle,π : Pλ → M×f εS

1, endowed with a principal flat
connection,ω. The conformal structure associated withḡ = π∗(g+ εf 2dt2)+ω∗(dσ 2) in
Pλ is foliated by(r + 1)-dimensionalG-submanifolds.

The method we have exhibited gives interesting examples of Kaluza–Klein conformal
structures which are foliated byG-submanifolds. However, it also works to show the exis-
tence ofG-submanifolds in certain conformal structures. We have chosen a pair of examples
to illustrate this application.

Example 8. In this example, we show the existence of anr-elastic circle in the hyperbolic
plane for any natural numberr, and it can be also applied to the hyperbolicn-space. Letp0

be a point of the hyperbolic planeH2, and denote byg0 the standard metric onH2. We use
polar coordinates to see that

(H2, g0) = (0,+∞)×f S
1,

wheref : (0,+∞) → R is defined byf (t) = sinh2t . We use Proposition 1 to see that
the circle{t} × S1 is an r-elastica in(H2, g0) if and only if tanh2t = 1 + (1/r). As a
consequence, we have proved the existence ofG-submanifolds in a wide class of conformal
structures in supergravity which have the hyperbolic space as gravity space. This class is
a two-parameter family with one parameter being the isomorphy class of the Lie groupG

and the second one a rational number.

Example 9. In the Schwarzschild universe we can compute the distance from the center
of the star for which each geodesic of the corresponding sphere is anr-elastica in that
Schwarzschild universe. To do it, we notice that

(
G′)2 = (G− 2m)G and soG

′ ′ = m/G.
Now, we use Proposition 1 to obtain that the above mentioned distance is achieved on the
sphereG−1 ((3 + (1/r))m)×S2 and it gives solutions for any natural numberr. Therefore,
the circular planetary orbit

(
t (u),G−1 ((3 + (1/r))m) , θ(u)

)
, projects in a great circleθ(u)

of S2 which is anr-elastica. In this context, one could talk aboutr-elastic planetary orbits
and r-elastic spheres in a Schwarzschild space time. Notice that the family ofr-elastic
spheres converges towards the photon sphere whenr goes to infinity. In this sense, one
could view the photon sphere (which gives orbits which are null geodesics) as a limit
position forr-elasticity in the infinity.
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