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Abstract

The principle of symmetric criticality allows one to reduce the search of symmetric critical points
for the conformal total tension functional in a Kaluza—Klein conformal universe, to the search of
closed curves in its gravitatory component which are critical points for certaiastic energy
functionals. The constancy of the mean curvature is preserved in this reduction of symmetry. In
this framework we study the-elasticity of fibres in a semi-Riemannian warped tube. We obtain a
wide class of tubes which are foliated belastic circles and give some applications including a
characterization of the photon sphere in a Schwarzschild spacetime from the point of view of the
r-elasticity. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let (P, g) be a semi-Riemannian manifold and denotd by, P) the smooth manifold
of immersions of am-dimensional compact smooth manifdidn P. The Willmore—Chen
functional7 : I1(S, P) — R s given by (see [9])

T(p) = / (H, H) — ©)"/*dv,
S

where H is the mean curvature vector field gf(i.e. the tension field op), dv denotes

the volume element of the induced metgit(g) andt stands for the extrinsic scalar cur-
vature ofg. This functional is invariant under conformal transformations of the ambient
space and is also known as tbenformal total tension functionallhe associated vari-
ational problem is actually stated {(®, [g]), where k] denotes the conformal structure
defined byg. The nicest immersions of in (P,[g]) are those which support the least
possible conformal total tension from the surrounding conformal structure and therefore
they provide Willmore—Chen submanifolds, i.e. critical pointgofin particular [5], if G

is anr-dimensional compact group of isometries(iP, g), then this variational problem
forn = r + 1 can be reduced to one associated with a certaltastic energy functional
acting on closed curves in the orbit space (in the next section we defineghastic en-

ergy functional whose critical points are calleeklasticae in particular, whenr=1 this
notion coincides with the classical one of elastic curve). This reduction of variables works
fine whenP is a principal fibreG-bundle with a principal flat connection over a certain
semi-Riemannian manifol@dV, ¢) andg is obtained by the so called Kaluza—Klein inverse
mechanism. In addition, we are interested in th@smvariant Willmore—Chen submani-
folds which have constant mean curvaturéi) g) because they are solutions to the isoperi-
metric problem area—volume, which is what we call th@ssubmanifolds. Consequently, to
obtainG-submanifolds in a Kaluza—Klein conformal univergg, [g]), we only need to get
r-elastic circles inits gravitatory component. Here circle means a closed curve with constant
curvature.

In this paper, we consider spaceg &s gf) =Mxy S, for a given semi-Riemannian
manifold (M, g) and a smooth positive warping functioh on M. For anyp € M,
the fibrey, = {p} x S? provides a circle and then we characterize those fibres which
are r-elastica. In particular, we classify tho$#/, g, /) which provide a foliation by
r-elastic circles in(N, ggf). We give some examples of solutions to illustrate this and
use it to obtain examples of Kaluza—Klein conformal universes which are foliated with
leaves beings-submanifolds. We also give some general applications to the existence of
G-submanifolds. Finally, we obtain other convenient applications including the following
one:

In the Schwarzschild spacetime, every great circle of the sphere whose distance to the
center of the star i3+ (1/r))m (m being the mass of the star), is an r-elastica in this space-
time. Consequently, we can talk about a sequence of r-elastic spheres in the Schwarzschild
spacetime which converges towards the photon sphere
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2. Circle warped product

Let (M, g) be a semi-Riemannian manifold afda smooth positive function on.
We denote by the Levi-Civita connection ofM, g). OnN = M x S, we consider the
semi-Riemannian metrig? = g + ef2dr?, with obvious meaning and = +1. Then,

(N, g,,f) is called thewarped productwith warping function f, base (M, g) and fibre
(S1, d?). Notice that the index o’ coincides with the index of if ¢ = +1, while

it increases the index of if ¢ = —1, by one. Whery is understood then, we still use
M x¢ St to denote(N, gf) (see [7,14] for details about this subject). For ang M,
lety, = {p} xr ¢St be the fibre throughy. We assume it is arclength parametrized, so
¢ is the causal character of its unit speed vector fiele- y,. Let V/ be the Levi-Civita

connection of NV, g;gf). Then

V{fT = —?gradf), (2.2)
where gradf) stands for the gradient of in (M, g). This equation shows that, has
constant curvature, say > 0, in (N, g&f) for any p € M. In particular,y, is a geodesic
of (N, gZ) if and only if p is a critical point of f. Let = be the set of critical points of .
Then the principal normal vector field to the fibrés,defines a unit speed flow on the open
setM — X in the direction of gradf), namely gradf) = —e8«xfU, wheres denotes the
causal character df. Moreover, fromV%U = (U(f)/f)T, one sees that the torsion of
each fibre in(V, g;!l) vanishes identically. .

Let Q be the manifold of regular closed curves M, g,‘;f). For any natural number, we
define arr-elastic energy functionag#” : Q — R by

. _ (r+1)/2
Fry) = /V () g,

wherex denotes the curvature function gfand we write the integrand in that form to
point out that it is an even function of the curvature. The variational problems associ-
ated with those functionals have been considered in [4]. Critical poinfs"ddre called
r-elasticaeand the Euler-Lagrange equations characterizing these curves were computed
there.

Remark 1. Recall that one of the oldest topics in the calculus of variations is the study of
the elastic rod, which according to Daniel Bernouilli’s idealization, minimizes total squared
curvature among curves of the same length and first order boundary data. Therefore, the
classical term elastica refers to a curve in the Euclidean plBA®r Euclidean spac&3

which represents such a rod in equilibrium. While the elastica and its generalizations have
long been (and continue to be) of interest in the context of elasticity theory, the elastica
as a purely geometrical entity seems to have been largely ignored. In [8] was found that
the natural generalization of elastica to space forms (where arclength is not constrained)
constitutes an interesting example in the setting of the general theory of exterior differential
systems. The term of free elastica is used in [11] to name these curves. In [12], the elastic
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curves inE? are used to obtain cylindrical configurations of Nambu-Goto-Polyakov string
theory inE2. This result was drastically extended and simplified by the first authorin [2]. In
this paper, we use the term r-elastica to name the critical points of the functidn&esults
of Section 4 connecting this topic with the Willmore—Chen variational problem could be
regarded as an intent to relate the r-elasticity actions with brane actions, in order to obtain
symmetric shapes of p-branes coming from r-elasticae.

Now, we deal with the following:

Problem. What about the-elasticity of fibres in(n, ggf)?

This problem has been studied in [5,6] whevw, gf) is a surface of revolution in either
the Lorentzian 3-spade® or the Euclidean 3-spad®, i.e. M is a plane curve and denotes
the distance to the axis of revolution on the profile curve. In particular, the so-tailfeget
surfacesare characterized there as the only surfaces of revolution, besides right cylinders,
whose parallels are allelastica.

Now, we use the Euler—Lagrange equations associatedif#], to deduce that a fibre
¥p is anr-elastica if and only if

€ (0 + DRI U, TIT + 862U ) = 0, 2.2)

alongy,, whereR/ stands for the curvature operator @, gg). Notice that Eq. (2.2)
implies that the sectional curvature @Y, gf) along the osculating plane of arelastic
fibre is either nonpositive (i = +1) or nonnegative (it = —1). It should also be
observed that every geodesic fibre is automatically-afastica for any. The following
result provides a characterization of circle warped prod(mt,Sgéf) whose fibres are all
r-elastica.

Proposition 1. All the fibres of(V, géf) =M xy eS! are r-elastica if and only if either

1. f =aisaconstantM — ¥ = Jand(N, g{) is the semi-Riemannian product@f, g)
and a circle of radius a (in this case all the fibres are geodesic), or

2. The unitary field/ = grad f)/|lgrad f)|| defines a unit speed geodesic flowldr- .
Furthermore, the evolution of f along the U-flow is given by

(r + DFUU () = U2 (23)
Proof. The curvature term appearing in Eqg. (2.2) is computed to be
&
RI(WU.T)T = —7V{;(grad(f))-

We put gradf) = SU(f)U in the above formula and use the fact that the b@geg)
defines a foliation oriN, gsf) with totally geodesic leaves isometric with/, g) to obtain

RI(U, DT = —?(U(U(f))UvLU(f)VUU)-

Now, we combine this equation with (2.2) and use= U(f)?/f? to obtainVyU = 0
and along this unit speed geodesic flow, the funcifoevolves according to (2.3). O
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Remark 2. If (M, g) is Riemannian and = —1, then(N, g{) is a standard static space-
time. Also, if(M, g) is a Lorentzian solution given in the above proposition and +1,
then it admits a geodesic and irrotational unit vector fieldin particular, if this is timelike,
then it is (at least locally) a proper time synchronizable observer field

3. Some examples

In this section, we describe a list of examples which provide solutions to the problem
of having all fibres being-elastica. The simplest case is that wh&fés one-dimensional
and it includes the surfaces of revolutioriid andIL®. Therefore, our preliminary example
was given in [6] (see there for some pictures).

Preliminary example (The trumpet surfaces). L&3 endowed with the metrig, =
dx2 4 dy2 4 pdz?, 4 = +1. Then(R3, g,,) is either the Euclidean 3-spad®, if .« = 1 or
the Lorentzian 3-spade? if © = —1. For a certain constantwe define in théx, z}-plane
an arclength parametrized curgés) = (x(s), z(s)) and

x(s) = cg 1, z(s) = / \/1 — u(r + 1)2c2t 2 dt.
0

Then, we rotate8 around thez-axis to obtain a surface of revolutiofy = I X
S, I being the domain of, in (R3, gw) Whose parallels are all spacelikeglastica in
Sg.

Example 1 (A constant scalar curvature metric which is r-elastica foliated). (et g)

be the Poincaré half-plane identified with the region- 0 in R? and the metrig =
(1/v?)(du? 4+ dv?) with constant Gaussian curvature —1. This metric is a warped product
one. In fact, we put = Inv and theng = (1/exp 2)du? + dr2. We consider the smooth
function f : M — R given by f(u, 1) = "+1. The curves: = constant define a geodesic
flow in the direction of gradf) in (M, g). In other wordsl/ = 9, generates a unit speed
geodesic flow ifM, g). Now, the functionf is positive in the open sét = {(u, v)| v > 1}

and its evolution throughout tHé-flow is described by (2.3). Consequentyx ¢ eSt has

all the fibres being-elastica.

Metrics with constant scalar curvature in dimension 3 are the next in interest after those
with constant curvature. The scalar curvature functiorVok ¢ eSt is, up to a positive
constant—1+ ((r +1)/exp 2)(1—r). In particular, it is constant when= 1. In this case,
we obtain a metric with negative constant scalar curvature on theltubg St which is
foliated by freer-elastic circles.

Example 2 (Tubes around a Robertson—Walker spacetime). (I&tg) be a Robertson—
Walker spacetime, i.eM = (0,a) x; S, wherea is some positive real numbe#, :
(0,a) — R is a positive smooth function.S, go) is a three-dimensional Riemannian
manifold with constant curvature and ther= —dr? + h2gq, with obvious meaning. The
Robertson—Walker flow which is generatediy= 9, is a geodesic one and it provides a
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relativistic model of the flow of a perfect fluid. We defiffie: M — R by f(t, p) = "1
and use Proposition 1 to conclude that the tiibe ; St has all the fibres beingelastica.

Example 3 (Tubes around a Schwarzschild universe). The Schwarzschild solution of the
empty space Einstein equation models the gravitational field outside an isolated, static,
symmetric star. Staticity and spherical symmetry conditions are both satisfied on the product
manifold M = R x (0,a) x S?, fora > 0 endowed with a warped product metric as
follows:

g = —F?(s) d? + ds® + G?(s) do?,

where (S?, do?) is the unit round sphere. Now), g) is a solution of the empty space
Einstein equation provided

F:G/:,/l—z—m,
G

for some constank:. The functionG, defined on(2m, +00) is usually interpreted as the
distance from the center of the star. We deffhe M — R by f(,s, p) = s"t1. The
spacelike vector field/ = 9, generates a unit speed geodesic flow in the direction of
grad f) on M and f is described by Eqg. (2.3) when it evolves along this flow. Therefore,
all the fibres of the tube/ x ; eSt arer-elastica.

Example 4 (A wide framework of solutions). LetM, g) be a Riemannian manifold en-
dowed with a non-trivial closed conformal fielt, i.e. there exists a smooth function

Y on M with V,X = .z, for every vectorz tangent toM. This kind of structure has
been widely studied in the literature not only for itself but also related to other sub-
jects (see [13] and references therein). For example it is known that thHe afepoints
where X vanishes has at most two points and outsidé oM, g) is locally a warped
product with a one-dimensional base. The unitary vector fiéle= X /| X||, defined in

M — T, generates a unit speed geodesic flow. Therefore, we can consider a positive smooth
function with gradient in thé/-direction and evolving, at least locally, according to Eq.
(2.3) along the/-flow to obtain an ample family of tubes which are foliatedglastic
circles.

Example 5(An example which is not a warped product). All the above exhibited solutions
are, at least locally, warped product semi-Riemannian metrics with a one-dimensional base,
the base generating a geodesic flow. However, we can get other solutions. To make clear this
claim, we take an arclength parametrized cupn@) in IE2 with positive torsion everywhere.

Then, we consider the ruled surface generated@nby the binormal linesM = {y (s) +

vB(s)|s € Iandv > 0}. Let g be the metric onM induced by the Euclidean one @s.
Then(M, g) is not a local warped produgf,= (1 + v272(s)) ds? + dv?, wherer denotes

the torsion function of . However, it still admits a geodesic flow, = 9,. Therefore, if we
choosef : M — R defined byf (s, v) = v"*+1, then all the fibres of the tubel x ; St are
r-elastica.
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4. Some applications in conformal Kaluza—Klein supergravity

Let (P, [g]) be a conformal universe, i.eg][is the conformal structure associated with

a semi-Riemannian metrigon P. Assume that is ar-dimensional, compact Lie group

which acts onP through isometries of P, g). The best worlds to live in this universe are

those compact submanifolds which satisfy the following three properties:

1. The submanifolds ai@-invariants. This means they have a natural degree of established
G-symmetry.

2. The submanifolds support the least global tension possible from the surrounding confor-
mal structure{]. In particular, they must be critical points of the total tension functional,
i.e. Willmore—Chen submanifolds (P, [g]).

3. The submanifolds are solutions to the isoperimetric problem area—volume (minimum
area for a fixed volume or maximum volume for a fixed area). In particular, they must
have constant mean curvature(iP, g).

From now on, we will use the term @ -submanifoldto name those submanifolds in

a conformal universéP, [g]), which areG-invariant, Willmore—Chen and they have a

constant mean curvature {®, g).

Next, we describe a class of conformal universes which have great interest in super-

gravity. We start from a semi-Riemannian manifé, g), the gravitatory space. L&{

be a closed normal subgroup of the fundamental grou@) and¢ : 71 (N)/H —

G a monomorphism, wher& is a r-dimensional, compact Lie group. Then, we can

define a principal fibreG-bundler : P — N which admits a principal flat connec-

tion, w, whose holonomy sub-bundle is the regular coveringvVoissociated withH.

The way to construct this couple?, w) is well-known (see [10] for example). Ifo

is a bi-invariant metric onG, we can define the following semi-Riemannian meffic

on P:

g =7n"(g) + w*(do?),

and this is called &aluza—Kleinmetric (also known as bundle-likemetric). It should
be noticed thag is the only semi-Riemannian metric ahwith the following property:
7 . (P,g) — (N, g)is a semi-Riemannian submersion with totally geodesic fibres iso-
metric with (G, do?) and horizontal distribution defined hy. Furthermore, the natural
action of G on P is carried out by isometries @fP, g). Then, we get a class of confor-
mal universes in which a unified Kaluza—Klein theory can be constructed. This unifies
the gravityg with the gauge potentiab. Now the problem is to studg-submanifolds
in this kind of conformal universes. The surprising fact is that this problem(for
1)-dimensionalG-submanifolds is equivalent to that efelasticae with constant curva-
ture in the gravitatory compone@, g). This equivalence was shown in [4,5] (see also
[1,3] for other conformal universes). However, we wish to make some comments about
this symmetry reduction method because it uses the principle of symmetric criticality
(in a formulation due to Palais [15]) which has been used in many applications of the
Calculus of Variations, in particular in Physics, without being particularly
noticed.
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Proposition 2 (Barros et al. [4,5]).Let S be arir + 1) — dimensionalcompact submanifold

in P. Then, S is a G-submanifold in a Kaluza—Klein conformal univePség]) if and only

if S = 7~1(y) andy is an r-elastica with constant curvature in its gravitatory component,
(N, g).

Proof. LetS be acompacty + 1)-dimensional smooth manifold and puts, P) to denote
the space of immersions &fin P. The subspace aF-invariant immersions is denoted by
I (S, P). Notice that it is a smooth submanifold 6{S, P) which is guaranteed by the
compacity ofG. This submanifold can be identified with the space of complete lifts of
closed curves iniN, g). Namely, I (S, P) = 7~ 1(y)/y is a closed curve iv. A direct
computation shows that the mean curvature function o¥(y) in (P, g) is obtained by
lifting the curvature function of in (N, g) and the extrinsic scalar curvaturesof1(y) in
(P, g) vanishes identically. Since the conformal total tension functi@nals, P) — Ris
invariant under conformal changes in the ambient metrit is obviouslyG-invariant. In
this framework, we can use the principle of symmetric criticalitye G -invariant critical
points of the conformal total tension functional di(S, P) are the critical points of this
functional but restricted to the submanifol; (S, P). Finally, we compute this restriction
to obtain a constant multiple of theelastic energy functiongF” acting on the space of
closed curves iiN, g). O

Propositions 1 and 2 can be combined to obtain examples of Kaluza—Klein conformal
universes which are foliated with leaves beiigsubmanifolds. To illustrate this method,
we give a couple of examples.

Example 6. Let V be the open region of the Poincaré half-plane which was defined in
Example 1. We choose any compact Lie graupith dimensiorr and define the function
fonV, likeinthatexample, to obtaifiV, g{) =Vx fESl. Let N be the universal covering

of N which can be regarded as a principal firdundle onV. For any real number with
(A/m) ¢ Q (the set of rational numbers), we defipye: Z — St by ¢, (a) = expiai which

is a monomorphism betwedf, +-) andS! c C viewed as a multiplicative group. Since

G admits closed geodesics, we can exténdo a monomorphism, also calleg, from

Z to G. This is used to define, via the extending transition functions method, a principal
fibre G-bundler : P, — N which admits a principal flat connectios@, with holonomy
sub-bundleV (N, Z). Now, we defingg = 7*(8%) + w*(do?) and apply Propositions 1 and

2 to conclude thatP,, [g]) is foliated by(r 4+ 1)-dimensionalG-submanifolds.

In particular, if we choos& = S, we get(P;, [g]) doubly foliated by Willmore tori
with leaves cutting along a closed geodesic(Bf, g). In fact, letp € P, be a point
with x = (x1,x2) = 7(p) € V x S. Lety; be any closed free elastica (i, g) [11].
Then,B1 = (y1, x2) is still a closed free elastica Wi x ¢ ¢St because the base defines a
totally geodesic foliation iV x ¢ eSt. Also y» = {x1} x St is a closed free elastica in
V x &St Thenr ~1(y1) andr ~(y2) are Willmore tori in( Py, [g]) throughp. Moreover,
7~y N () = 77 1(x) is a geodesic of P, 7).

Example 7. The above construction can be transferred to the tube around the Schwarzschild
metric already considered in Example 3. ThereforéMf g) is the Schwarzschild metric
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andf is chosen as in that example, thenx ¢ eStis foliated byr-elasticae. Now, given any
r-dimensional, compact Lie grouf;, we define a monomorphisg, : Z — G and use it
to construct a principal fibré-bundler : Py, — M x eSt, endowed with a principal flat
connectionw. The conformal structure associated with= 7* (g + & 2dr2) + w*(do?) in
P, is foliated by(r + 1)-dimensionalG-submanifolds.

The method we have exhibited gives interesting examples of Kaluza—Klein conformal
structures which are foliated ly-submanifolds. However, it also works to show the exis-
tence ofG-submanifolds in certain conformal structures. We have chosen a pair of examples
to illustrate this application.

Example 8. In this example, we show the existence ofraglastic circle in the hyperbolic
plane for any natural numberand it can be also applied to the hyperbalispace. Lepg
be a point of the hyperbolic plari#?, and denote by the standard metric di2. We use
polar coordinates to see that

(H2, go) = (0, +00) x s S,

where f : (0, +00) — R is defined byf () = sint?z. We use Proposition 1 to see that

the circle{r} x St is anr-elastica in(HZ2, go) if and only if tantfs = 1+ (1/r). As a
consequence, we have proved the existeneesfibmanifolds in a wide class of conformal
structures in supergravity which have the hyperbolic space as gravity space. This class is
a two-parameter family with one parameter being the isomorphy class of the Lie Group
and the second one a rational number.

Example 9. In the Schwarzschild universe we can compute the distance from the center
of the star for which each geodesic of the corresponding sphere riselastica in that
Schwarzschild universe. To do it, we notice t(ﬁ‘f)z = (G — 2m)G and soG" = m/G.

Now, we use Proposition 1 to obtain that the above mentioned distance is achieved on the
sphereG—1 ((3+ (1/r))m) x S? and it gives solutions for any natural numbeTherefore,

the circular planetary orb(‘t(u), G Y@+ A/r)m), 9(u)), projectsinagreat circk(u)

of S2 which is anr-elastica. In this context, one could talk abetglastic planetary orbits
andr-elastic spheres in a Schwarzschild space time. Notice that the familyelafstic
spheres converges towards the photon sphere wiggaes to infinity. In this sense, one
could view the photon sphere (which gives orbits which are null geodesics) as a limit
position forr-elasticity in the infinity.
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